Fellow Story

Miner quoted on frozen virus revived from permafrost

Kimberley Miner was featured in the CNN story Scientists have revived a 'zombie' virus that spent 48,500 years frozen in permafrost, speaking on the risks of thawing permafrost. 

"There's a lot going on with the permafrost that is of concern, and (it) really shows why it's super important that we keep as much of the permafrost frozen as possible," she told CNN. 

The article continues: 

Permafrost covers a fifth of the Northern Hemisphere, having underpinned the Arctic tundra and boreal forests of Alaska, Canada and Russia for millennia. It serves as a kind of time capsule, preserving — in addition to ancient viruses — the mummified remains of a number of extinct animals that scientist have been able to unearth and study in recent years, including two cave lion cubs and a woolly rhino.

The reason permafrost is a good storage medium isn't just because it's cold; it's an oxygen-free environment that light doesn't penetrate. But current day Arctic temperatures are warming up to four times faster than the rest of the planet, weakening the top layer of permafrost in the region.

To better understand the risks posed by frozen viruses, Jean-Michel Claverie, an Emeritus professor of medicine and genomics at the Aix-Marseille University School of Medicine in Marseille, France, has tested earth samples taken from Siberian permafrost to see whether any viral particles contained therein are still infectious. He's in search of what he describes as "zombie viruses" — and he has found some.

Miner’s 2021 research identifies an array of potential hazards currently frozen in Arctic permafrost, including buried hazardous waste. Her research found direct human infection by ancient viruses in the permafrost “currently improbable”. 

However, Miner said she is worried about what she termed "Methuselah microorganisms" (named after the Biblical figure with the longest life span). These are organisms that could bring the dynamics of ancient and extinct ecosystems into the present-day Arctic, with unknown consequences.

The re-emergence of ancient microorganisms has the potential to change soil composition and vegetative growth, possibly further accelerating the effects of climate change, Miner said.

"We're really unclear as to how these microbes are going to interact with the modern environment," she said. "It's not really an experiment that I think any of us want to run."

The best course of action, Miner said, is to try and halt the thaw, and the wider climate crisis, and keep these hazards entombed in the permafrost for good.

Read the full story here.